ANOVA

Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among means. ANOVA was developed by the statistician Ronald Fisher. ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether two or more population means are equal, and therefore generalizes the t-test beyond two means. In other words, the ANOVA is used to test the difference between two or more means. [1]

The analysis of variance can be used to describe otherwise complex relations among variables. A dog show provides an example. A dog show is not a random sampling of the breed: it is typically limited to dogs that are adult, pure-bred, and exemplary. A histogram of dog weights from a show might plausibly be rather complex, like the yellow-orange distribution shown in the illustrations. Suppose we wanted to predict the weight of a dog based on a certain set of characteristics of each dog. One way to do that is to explain the distribution of weights by dividing the dog population into groups based on those characteristics. A successful grouping will split dogs such that (a) each group has a low variance of dog weights (meaning the group is relatively homogeneous) and (b) the mean of each group is distinct (if two groups have the same mean, then it isn't reasonable to conclude that the groups are, in fact, separate in any meaningful way). [1]

In the illustrations to the right, groups are identified as X1, X2, etc. In the first illustration, the dogs are divided according to the product (interaction) of two binary groupings: young vs old, and short-haired vs long-haired (e.g., group 1 is young, short-haired dogs, group 2 is young, long-haired dogs, etc.). Since the distributions of dog weight within each of the groups (shown in blue) has a relatively large variance, and since the means are very similar across groups, grouping dogs by these characteristics does not produce an effective way to explain the variation in dog weights: knowing which group a dog is in doesn't allow us to predict its weight much better than simply knowing the dog is in a dog show. Thus, this grouping fails to explain the variation in the overall distribution (yellow-orange). [1]

An attempt to explain the weight distribution by grouping dogs as pet vs working breed and less athletic vs more athletic would probably be somewhat more successful (fair fit). The heaviest show dogs are likely to be big, strong, working breeds, while breeds kept as pets tend to be smaller and thus lighter. As shown by the second illustration, the distributions have variances that are considerably smaller than in the first case, and the means are more distinguishable. However, the significant overlap of distributions, for example, means that we cannot distinguish X1 and X2 reliably. Grouping dogs according to a coin flip might produce distributions that look similar. [1]

An attempt to explain weight by breed is likely to produce a very good fit. All Chihuahuas are light and all St Bernards are heavy. The difference in weights between Setters and Pointers does not justify separate breeds. The analysis of variance provides the formal tools to justify these intuitive judgments. A common use of the method is the analysis of experimental data or the development of models. The method has some advantages over correlation: not all of the data must be numeric and one result of the method is a judgment in the confidence in an explanatory relationship. [1]

XLSTAT allows you to harness the full power of ANOVA simply within Excel.

References

[1] https://en.wikipedia.org/wiki/Analysis_of_variance